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Abstract— Electrical Power System is one of the most complex real time operating systems. It is probably one of the best examples of a large 
interconnected non-linear system of varying nature. This system changes it's state time to time with change in load, transmission and 
generation conditions. Such changes in the system causes small signal oscillations, the frequency range of such oscillations is about 0.2 to 3 
Hz, if they are persist for long duration they may limiting the power transfer capability of the system. For the stable and secure operation of the 
system adequate damping for small signal oscillations is required. A auxiliary controller can provide adequate damping for the system called 
power system stabilizer (PSS). 
 Fixed parameter controllers are most commonly used controller for this applications. This is a conventional method of designing 
power system stabilizer. It gives the better performance for single operating condition only. In this paper a technique for designing a robust 
power system stabilizer using  𝐻∞ control theory has been discussed. These stabilizers  gives the comparable performance for a wide range of 
operating condition. In case of interconnected system conventional method of designing power system stabilizer is extremely complex, and 
there is need of system information external to the plant. Modified Heffron-Phillip's model provide solution for this problem, it allow designing 
power system stabilizers without using system information external to the plant. In this paper modified Heffron-phillip's model has used for 
designing stabilizer for multi-machine system. PSS at each machine can be synthesized using information available at local buses only. 
 
 
Index Terms— Power system stabilizer (PSS) , small-signal stability, Heffron-Phillip’s model (HP) , Single Machine Infinite Bus (SMIB). 
 

———————————————————— 
 
 
1 INTRODUCTION 

 
One of the major problems in electrical power system 
operation is related to the small-signal oscillatory 
instability caused by insufficient natural damping in 
the system. The most effective way of countering this 
instability is to use auxiliary controllers called power 
system stabilizers (PSS), to produce additional 
damping in the system [1], [2]. The concept of PSS and 
their tuning procedures are well explored in [1]–[4]. 
The fixed gain stabilizers perform reasonably well if 
they have been tuned properly [5]. Though these 
stabilizers have simple robust structures, tuning them 
either by computer simulation modeling [2], [4] or by 
actual  field tests [3] is an involved process which 
requires considerable expertise and also a knowledge 
of system parameters external to the generating station. 
These parameters may not be readily available and 
may vary during normal operation of the power 
system. Even in the case of single machine infinite bus 
model, estimates of equivalent line impedance and the 
voltage at the external bus are required. The PSS design 
also requires information of the rotor angle δ measured 
with respect to an external bus. These parameters 
cannot be measured directly and need to be estimated 
based on reduced order models of the rest of the 
system connected to the generator. If the available 
information for the rest of the system is inaccurate, the 
conventionally designed PSS results in poor system 
performance. 
 A coordinated PSS design methodology based 
on damping torques approach for a wide range of 
operating conditions has been described in [6]–[8]. This 

method uses P-Vr characteristics obtained by disabling 
the shaft dynamics of all the machines. However, this 
formulation is not suitable for very large systems. In [9] 
a thorough analysis of the frequency responses of 
generator electrical torques is performed. It is shown 
that the frequency responses between AVR input and 
the resultant electrical torque at the rotor shaft has two 
components. One component is dependent on the 
associated generator as well as on the network 
admittance matrix augmented with the generator 
admittances and the other component depends only on 
the associated generator. The diagonal dominance 
property of the admittance matrix makes the first 
component less affected by the generators external to 
the generator under consideration. It means that the 
required dynamic information for the PSS design may 
be contained mostly within the generating plant. The 
tuning guidelines of [2] recommend the PSS tuning for 
a strongest system possible with full loading for speed 
and power input signals due to the occurrence of 
maximum phase lag under these conditions. From the 
above discussions it follows that even if the dynamics 
of the external generators are ignored as a first 
approximation and the stabilizer is designed to provide 
maximum phase lead around the local mode of 
oscillations, the PSS will still have sufficient lead at the 
inter area modes which are largely influenced by the 
dynamics of the external generators. Such PSS will be 
able to damp out both local mode and inter area modes 
of oscillation. The present design is based on this 
presumption. 
 The method proposed for the PSS design in the 
present paper is also based on the conventional design 
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technique as described in [2] and [4]. However, as 
opposed to a conventional stabilizer design, the system 
dynamics are linearized by taking the secondary  bus 
voltage of the step-up transformer (high voltage bus) 
[10] as reference instead of the infinite bus [11]. The 
GEP(s) phase characteristics obtained from this model 
can be treated as that of a strong system having 
virtually transformer reactance as external reactance 
with full loading. This model is almost similar to the 
Heffron-Phillip’s (HP) model; however the model 
parameters are independent of the external system 
information. This facilitates one to use this model for 
any machine in the multi-machine environment. 
Following conventional compensator design 
techniques based on root-locus and bode plots [12], 
PSSs  are designed independently for each machine. All 
PSS design parameters are thus calculated from local 
measurements, 
 

 
Fig. 1: Single Machine Connected to External Network 

 
i.e., voltage and power measurements at the high 
voltage bus and there is no need to estimate or 
compute the values of equivalent external impedance, 
bus voltage and rotor angle. 
 The performance of the designed stabilizers is 
analyzed for two widely used IEEE test systems, 3 
generator 9 bus system and 10 generator 39 bus system. 
The performance is evaluated under various operating 
conditions and compared with the performance of PSS 
designed by PVr characteristics and the method of 
residues [13]. The stabilizers based on the proposed 
design technique have shown better damping 
characteristics under heavy and nominal loading 
conditions and more or less similar performance under 
light loading conditions, when compared to the other 
two methods which are based on the complete system 
information. 
 
2 MODELING OF POWER SYSTEM 
 
For small-signal stability analysis, dynamic modeling is 
required for the major components of the power 
system. It includes the synchronous generator, 
excitation system, automatic voltage regulator (AVR), 
etc. Different types of models have been reported in the 

literature depending upon their specific application. 
The model shown in Fig. 1 is used to obtain the 
linearized dynamic model [14] (Heffron-Phillip’s or K-
constant model). IEEE Model 1.0 is used to model the 
synchronous generator [12] with a high gain, low time 
constant static exciter. 
 

 
 

Fig. 2: Single Machine Infinite Bus System 
 

 
 
 

Fig. 3: linearized  Model of Single Machine Infinite Bus System 
 
Generator Mechanical and Electrical Torque Equations: 
δṡ = wBSm     (1) 
Sṁ = 1

2H
 [ ∆Tm  −  ∆Te  − DSm ]  (2) 

∆Te =  K1∆δ + K2∆Eq′     (3) 
Expression for Heffron -Phillip's constant 𝐾1 and 𝐾2 
is given  

K1 =  Eb Eq0  cosδ0 
Xq+ Xt

+ Xq − Xd
′

Xe+ Xd
′  

 Eb  sin δ0  (4)  

K2 =  Xq+ Xe
Xe+ Xd

′  
iq0    (5) 

  
q-axis Flux Linkage: 
∆Eq′  = 

1
K3 Tdo

′ [K3(∆Efd − K4∆δ) − Eq′ ]  (6) 

Expression for Heffron-Phillip's constant 𝐾3 and 𝐾4 is 
given 

K3 = Xe  +  Xd
′

Xd + Xe  
     (7) 

K4 = Xd −  Xd
′

 Xe  +  Xd
′  Eb sinδo    (8) 

 
Excitation System: 
Representation of Linearized equations for the 
excitation system can be expressed as 
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∆Vt = K5∆δ +  K6∆Eq′     (9) 
∆Efd = 1

TA
 [ KA�∆Vref + ∆Vpss −  ∆Vt� −  Efd ] (10) 

Expression for Heffron-Phillip's constant 𝐾5 and 𝐾6 is 
given 

K5 = −  Xq Vdo  Eb  cos δ0
�Xq+Xe�Vt0

 − Xd
′  Vq0 Eb  sin δ0
�Xe+Xd

′ �Vt0
  (11) 

K6 = 
Xe

Xe+ Xd
′

 Vq0
 Vt0

     (12) 

 
Consider a single generator connected to the external 
system through a power transformer as shown in Fig. 4 
The rotor angle with respect to the voltage Vs ∠ θs of 
the high voltage bus is defined as δs = δ − θs. The 
expressions for δs , Eq′  , id′  and iq′  can be derived from 
the phaser diagram.  

 
Fig. 4: Phaser diagram of the system shown in Fig. 1 

 
From the ∆OAB in Fig. 4 we get 
AB = Ia (Xq + Xt) cos θp − Ia (Ra + Rt) sinθp (13) 
OA = Vs Ia (Ra + Rt) cosθp + Ia (Xq + Xt) sin θp (14) 
δs = tan−1 AB

OA
     (15) 

δs = tan−1 Ps �Xt+Xq� − Qs (Ra+Rt)
Ps (Ra+Rt)+ Qs �Xt+Xq�+ Vs2

  (16) 

Where 
 Ps and Qs can be given by 
 Ps = Vs Ia cos θp and Qs =  Vs Ia sinθp 
In rare cases, under leading power factor operations 
Ps (Ra + Rt) + Qs �Xt + Xq� + Vs2 < 0  (17) 
 
And δs is given by 
δs = π − |δsobtained in (eq 16)|  (18) 
 
The stator algebraic equations are given by 
Eq′  + Xd

′ id − Raiq = Vq       
− Xqiq − Raid = Vd     (19) 
From stator algebraic (19) one can get the following 
equation for Eq′  

Eq′  = 
(Xt+Xd

′ )
Xt

 �Vt2 – � Xq
�Xt + Xq�

 Vs  sin δs�
2

  

 −Xd
′

Xt
Vs cos δs                                          (20) 

The expressions for id and iq and are as follows 
id = BEq′  − YVs cos (δs +  α)   (21) 
iq = GEq′  − YVs sin  (δs +  α)   (22) 
 
Where  
α =  π

2
 −  tan−1 B

G
  with Y = �Yeq� 

Yeq =  1
�(Ra+Rt)+ j  �Xt+Xq��

= G + j B  

 
3 Modified Heffron-Phillip's Model 
 
Modified Heffron-Phillip's model is suggested in [7]. 
The standard linear model of SMIB known as Heffron-
Phillip's model (also called as K-constant model) can be 
obtained by linearizing the system equations around an 
operating condition. The synchronous machine can be 
interfaced with the external network by converting 
machine equations in Park's reference frame to 
synchronously rotating Kron's reference frame. The 
equations are given below for a SMIB system. 
 
VQ + jVD =  �Vq +  jVd�ejδ   

= �iq +  j id� (Re +  j Xe) ejδ + Eb∠0                                                         
(23) 

 
By using  Kirchhoff’s Voltage law between the 
generator terminal and the infinite bus. The subscripts 
q and d refers to the q and d-axis, respectively, in 
Park’s reference frame Q and D refers to the q and d-
axis, respectively, in Kron’s reference frame. Similar 
equation can be written between transformer bus and 
the generator terminal voltage and is given below. This 
is the only modification suggested in this paper to 
make the PSS design independent of the external 
system parameters 
 
�Vq +  jVd� =  �iq +  j id� (Rt +  j Xt) + Vs ∠θs e−jδ     
 

(24) 
 
Replacing δ by (δs + θs) in the above equation gives 
 
�Vq +  jVd� =  �iq +  j id� (Rt +  j Xt) + Vs ∠ − δs 

(25) 
 
We can get the modified stator algebraic equations 
referred to the transformer bus by equating the real 
and imaginary parts of the above equation . These 
equations are valid even for the multi-machine system. 
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Vq =  Rtiq  −  Xtid +  Vs  cos δs  
Vd =  Rtid  −  Xtiq + Vs  sinδs    (26) 
 
Equating stator algebraic equation (19)  and modified 
stator algebraic equation (26) and rearranging we can 
get 
 
(Xd

′ +  Xt) id  −  Rtiq =  Vs  cosδs  −  Eq′  (27) 
− �Xq + Xt� iq  −  Rtid =  − Vs  sin δs  (28) 
 
These equations can be written as 

�
id
iq
� =  

−1
X

 �
– �Xq +  Xt� Rt

Rt (Xd
′ +  Xt)

� 

  

       �
Vs  cos δs  −  Eq′

− Vs  sinδs
� 

(29) 
Where  
 
X = �Xq + Xt� (Xd

′ +  Xt) +  Rt
2  

 
The terminal voltage of the machine is given by 

Vt =  ��Vd
2 +  Vq2�    (30) 

Linearizing (29) around an operating condition using 
first order Taylor series approximation and upon 
simplification one can obtain 
 
∆id =  C1∆ δs + C2∆ Eq′ + CV1∆ Vs  
∆iq =  C3∆ δs +  C4∆ Eq′ + CV2∆ Vs  (31) 
 
Where 
 
C1 =  1

X
 �Rt Vs0  cos δs0  −  �Xq′ +  Xt� Vs0  sinδs0�  

C2 =  −  1
X

 �Xq′ + Xt�  

C3 =  1
X

 [(Xd
′ +  Xt) Vs0  cos δs0 + Rt Vs0  sinδs0]  

C4 =  Rt  1
X

   
CV1 =  1

X
 ��Xq′ + Xt�  cos δs0 + Rt  sin δs0�  

CV2 =  1
X

 [− Rt  cos δs0 + (Xd
′ +  Xt) sin δs0]  

 
δs0, Sm0, Eq0′ , Efd0 and Vs0 denote the values at the 
initial operating condition. The linearized versions of 
the equations (1) (2) (6) (10) and (30) are as follows 
 
∆ Te =  K1∆ δs + K2∆Eq′ +  Kv1∆Vs  (32)  
∆ δs =  wBSm  −  ∆ θs    (33) 
∆Sm =  1

2H
 [ ∆Tm  −  ∆Te  − D∆Sm ]          (34) 

∆Eq′ =  K3
1+sK3 Td0

′ [∆ Efd  −  K4 ∆ δs  − Kv2 ∆ Vs](35) 

∆ Vt =  K5 ∆ δs + K6 ∆Eq′ + Kv3 ∆ Vs  (36) 

∆ Efd =  KA
1+sTA

�
∆ Vref − (K5 ∆ δs + K6∆Eq′

                           +Kv3 ∆ Vs)
�       (37) 

 
The constants K1 to K6 are same as the original 
Heffron-phillips constants (Equations (4)(5) (7)(8) 
(11)(12)). However, they are no longer referenced to δ 
and Eb and independent of the equivalent reactance Xe. 
They are functions of Vs, δs, Vt and machine currents. In 
this model, as Vs is not a constant, during linearization, 
three additional constants Kv1 to Kv3 are introduced at 
the torque, field voltage and terminal voltage junction 
points, that is the major difference between this model 
and original Heffron-phillips model. 
Kv1 to Kv3 can be written as 
 

Kv1 =  Eq0  sinδs0
�Xt+Xq�

−  
�Xq−Xd

′ � Iq0  cos δs0
�Xd

′ +Xt�
  (38) 

Kv2 =  − �Xd − Xd
′ �  cosδs0

�Xd
′ +Xt�

   (39) 

Kv3 =  −Xq Vd0  sin δs0
�Xq+Xt�Vt0

+ Xd
′  Vq0   cos δs0
�Xt+Xd

′ � Vt0
  (40) 

 
The modified Heffron Phillip's model is shown in the 
fig 5. If the deviations in the transformer voltage are 
neglected then this model exactly represents a system 
with the external reactance Xe equal to the transformer 
reactance Xt. The modified constants can be obtained in 
real time by load flow information at the transformer 
and at the generator terminals. So for any PSS design 
based on this model, the parameters can be easily , 

 
Fig. 5: Linearized model of a single machine in a connected 

network 
 
Modified to accommodate major structural changes in 
the system from time to time by local measurements. 
 
4 𝐇∞Control Theory power system 

stabilizer design 
 
A method for designing robust power system stabilizer 
for a Single Machine Infinite Bus (SMIB) power system 
is described in this paper. A robust control approach 
based on H∞control theory is implemented to provide 
desired damping to the lightly damped or unstable 
mechanical modes. The implemented method provides 
adequate damping for the system dynamics over a 
range of operating condition. Performance of the 
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designed controller is simulated over wide range of 
operating conditions and compared with conventional 
PSS. 
Here P(s) is the plant and C is the controller.The signal 
w contains all external inputs, including disturbances, 
sensor noise, and commands; the output z is an error 
signal; y is the measured variables; and u is the control 
input. The resulting closed-loop transfer function from 
w to z is denoted by TZW. 
 

 
Fig. 6: Basic Block Diagram of H∞Optimal Control 

 
The state-space representation of the above system is 
given by 
 
ẋ = Ax + B1w + B2u    (41) 
z = C1x + D12w    (42) 
y = C2x + D21w    (43) 
 
There exist a compensator C(s) such that 
 
‖Tzw‖∞  <  𝛾     (44) 
 
Compensator C(s) exist if and only if 
 
X∞ = Ric(H∞)  ≥ 0    (45) 
Y∞ = Ric(J∞)  ≥ 0    (46) 
ρ(X∞Y∞ )  <  γ2    (47) 
 
Here H∞and J∞ given by 
 

H∞ =  �
A B1B1T

γ2
− B2B2T

− C1TC1 −AT
�   (48) 

J∞ =  �
AT C1TC1

γ2
− C2TC2

− B1B1T −A
�   (49) 

 
Where γ  is spectral radius of the matrix, expression for 
the controller is 
 

C(s) = � A
∧
∞ − Z∞L∞

−F∞ 0
�   (50) 

 
Where 
 

A
∧
∞ = A + B1B1

T X∞  
γ2

+ B2F∞ + Z∞L∞C2  (52) 

L∞ =  −Y∞C2T     (53) 
F∞ =  −B2TX∞      (54) 

Z∞ =  �I −  Y∞X∞  
γ2

�
−1

    (55) 
 
Theory explained in power system stabilizer design has 
been used with modified heffron-phillip's model. 
Designed stabilizer is tested with widely used standard 
IEEE systems one is 3 generator 9 bus system. The 
performance of the designed stabilizer is compared 
with conventional stabilizer. 
 
5 Robust Power System Stabilizer 
 
The combination of H∞ control technique and the 
modified Heffron-philip's model describe to design a 
stabilizer. Designed stabilizer is tested with widely 
used standard IEEE systems one is 3 generator 9 bus 
system. The performance of the designed stabilizer is 
compared with conventional stabilizer. 
 Fig 7 shows single line diagram of 3 generator 
9 bus test system. Generator data, network data and 
load flow data for the same sytem is given in the 
appendix B. 
  

 
Fig. 7: 3 Generator 9 Bus System 

 
By using H∞ control theory PSS has been designed for 
all three generator For given test system and their 
performance has been compared with conventional 
PSS. For performance analysis simulation has been 
carried out for nominal operating condition with 
creating some disturbances. 
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Fig. 8: Sm1COI for 0.1 pu Change in Tm of Generator 1 
 

 
 

Fig. 8: Sm1COI for 3∅ Fault on the Bus no. 7 for the duration of 
100 msec. 

 

 
Fig. 9: Sm2COI for 0.1 pu Change in Tm of Generator1 

 

 
Fig.10: Sm2COI for 3∅ Fault on the Bus no. 7 for the duration of 

100 msec. 
 
The linearized fourth order transfer functions of all 
three generators under nominal operating condition 
using modified Heffron-phillips's model described in 
previous section can be written as 
 
Pni(s) = n1i s

s4+d3is3+d2is2+d1i s+d0i
   (56) 

 
where i is the Generator Number 

Table 2 gives the undamped or lightly damped rotor 
modes of 3 generator 9 bus test system for nominal 
operating condition. 
 
Table  1: 3 Generator 9 Bus System : Generator Transfer 
Function 
  

Gen. 
No.(i) n1 d0 d1 d2 d3 

1 -384 11990 3713 309.8 20.94 
2 -246.9 13490 2579 286.3 20.88 
3 -8.245 12510 1126 279.4 20.19 

 
Table  2: 3 Generator 9 Bus System : Undamped or 
Lightly damped Rotor Modes 
 
Gen. No Undamped/ Lightly Damped rotor mode 

1 0.007 ± j7.47 

2 −1.485 ± j11.14 

3 −1.461 ± j13.91 

 
6 Appendix A 
 
δ: : Rotor angle 
δ s : Rotor angle with respect to the secondary voltage 
of transformer. 
S m : Slip speed. 
D : Damping coefficient. 
Eq′  , Ed

′  : Transient induced voltages due to field flux-
linkages. 
Efd : Field voltage. 
Edc
′  : Induced voltage of dummy coil used to account 

for transient saliency. 
H : Inertia Constant of machine. 
id : d-axis component of stator current. 
iq : q-axis component of stator current. 
Ke , KA : Exciter gain. 
M : angular momentum. 
Pt : Real power injected at the machine terminals. 
Qt : Reactive power injected at the machine terminals. 
Ra : Armature resistance. 
Te , TA : Exciter time constant. 
Tm : Mechanical torque. 
Te : Electrical torque. 
Tdo
′  , Tdo

′′  : d-axis time constants. 
Tqo′  , Tqo′′  : q-axis time constants. 
θp : power factor at the transformer bus. 
Tc′ : Time constant of dummy coil used to account for 
transient saliency. 
Vs ∠θs : Voltage measured at the secondary of the 
transformer. 
Vt ∠θ : Voltage measured at the generator terminal. 
Vref : Reference voltage. 
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Vpss : PSS Input. 
Vd , Vq : d and q-axis components of terminal voltage. 
ω : angular speed. 
ωB : Base Speed 
Xt , XL : Transformer and transmission line reactances. 
Xd , Xd

′  , Xd
′′ : d-axis reactances. 

Xq , Xq′  , Xq′′ : q-axis reactances. 
 
Appendix B 
 
This Single Machine Infinite Bus (SMIB) system data is 
taken from [2]. 
 
 
Generator Data: 
 xd = 1.6; xq = 1.55; xd

′ = 0.32; Tdo
′ = 6; H = 5;  

D = 0; fB = 60 HZ; EB = 1.0 p. u; xt = 0.1 p. u 
 
Static Excitation System Data:  
Ke = 200 ; Te = 0.05s;  Efdmax = 6; Efdmin = −6. 
 
PSS Data: 
T1 = 0.076; T1 = 0.028; Kpss = 16; TW = 2;  
PSS output limits = ±0.1 
 
Single line diagram for IEEE 3 generator 9 bus test 
system is shown in the Fig 7. Base MVA for the system 
is 100 MVA and system frequency is 60Hz 
 
Table 1: 3 Generator 9 Bus System - Machine Data 
 

Bus 
no 

xd xq xd′  xq′  Tdo′  Tqo′  H D Ra 

1 
0.1
46 

0.0
96 

0.0
60 

0.0
96 

8.
96 

0.3
1 

23.
64 

0.0
12 

0 

2 
0.8
95 

0.8
64 

0.1
19 

0.1
96 

6 
0.5
35 

6.4 
0.0
06 

0 

3 
1.3
12 

1.2
57 

0.1
81 

0.2
5 

5.
89 

0.6 
3.0
1 

0.0
04 

0 

 
Table 2: 3 Generator 9 Bus System - Network Data 
 

Type 
Fro
m 

To R X B/2 Tap 

No of 
Parall

el 
Eleme

nts 
1 2 7 0 0.062 0 1 0 
1 3 9 0 0.058 0 1 0 
2 4 5 0.01 0.085 0.088 1 1 
2 4 6 0.017 0.092 0.079 1 1 
2 5 7 0.032 0.161 0.153 1 1 
2 6 9 0.039 0.17 0.179 1 1 
2 7 8 0.008 0.072 0.074 1 1 

2 8 9 0.011 0.1008 0.104 1 1 

 
 
Table 3: 3 Generator 9 Bus System - Load flow Data 
 
Bus No. P Q V Θ 

1 0.71641 0.27046 1.04 0 
2 1.63 0.066536 1.025 9.28 
3 0.85 -0.1086 1.025 4.6648 
4 0 0 1.0258 -2.2168 
5 -1.25 -0.5 0.99563 -3.9888 
6 -0.9 -0.3 1.0127 -3.6874 
7 0 0 1.0258 3.7197 
8 -1 -0.35 1.0159 0.72754 
9 0 0 1.0324 1.9667 

 
7 CONCLUSION 
 
H∞ Based robust power system stabilizer design for 
interconnected power system has been presented. The 
use of modified Heffron-Phillip's model [7] permits the 
use of H∞ control technique for PSS design of multi-
machine system. PSS at each machine is synthesized 
using information available at the local buses only. The 
performance of the proposed stabilizer is reasonably 
good at all conditions tested. 
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